
A DESCRIPTION OF THE MOTION OF VISCOELASTIC POLYMER MEDIA 
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Governing and temperature equations are presented for polydisperse polymers 
in a viscous flowing state. The influence of a large relaxation time with a 
small weight on the motion is clarified. 

I. GOVERNING EQUATIONS 

A theory of viscoelastic media with intermediate elastic strain parameter is developed 
in [i]. In particular, a general theory of Maxwellian media is developed in [I, 2] with 
a number of its specifications for polymers. An improved modification of a Maxwell medium 
is proposed in [3] in application to melts and concentrated solutions of polydisperse 
polymers 
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ILh = trek, l~,k = trc~ -I . 

The subscript k here denotes belonging to the k-th Maxwell element (relaxation mechanism), 
the dot denotes the derivative with respect to time, and the letter S the symmetrization 
operation. 

Equations (I) and (4) connect the internal parameter of the medium, the elastic 
strain tensor e k with the external characteristics of the motion, the strain rate e and 
vortex ~ tensors. Condition (2) is the condition of incompressibility of the medium. 
Formula (3) yields a dependence of the stress o k (to the accuracy of the pressure) on the 
elastic strain c k. It is obtained [2] from an expression for the stress analogous to 
vulcanized rubber 

-~, ck ---- exp2Hh, (5) 

for the elastic potential [4] 

= = tr(c Z- E) 

where f is the free energy to the accuracy of a component dependent on the temperature, 
the modulus Pk ~ pT (see (3)) is assumed independent of the temperature for specific 
computations, and the constant n k is independent of the temperature. 

Equation (4) connects the irreversible strain rate ep, k to the elastic strain c k. 
Distortion of the potential barriers by the stress which we take into account by the 
following dependence of the relaxation time on the elastic energy:* 

(6) 

*Mechanical destruction will exert analogous influence on the relaxation time also. 
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where the constant Yk and the ratio YkWk/RT are independent of the temperature, can indeed 
turn out to be substantial during motion of a polymer medium. 

To describe polymer motion in a viscous flowing state N Maxwell elements connected 
in parallel are combined (under the assumption of a strong difference in the scales of the 
structural elements of the polymer) [2]. Then the total stress in the system is 

N 

o = - - P E + ~  oh, (8) 
h=! 

where the scalar p is determined from the boundary conditions. The tensor of the total 
strain rate �9 is identical in each Maxwell element. It is also assumed [5] that for the 
system free energy 

N 

t (9) 
k=l 

for an identical temperature T in each k-th Maxwell element. Therefore, the system free 
energy f is a function of T and the elastic strains c k (k = i, ..., N). From assumptions 
[i, 6] about the local equilibrium of a viscoelastic system 

T OuR Ofh 
=--, sh ..... , (I0) 

Osk OT 

[h ~- ua -- Tsa, (ii) 

from which there follows for the entropy and internal energy of the system 

N N 

(12) 
h=l h = l  

Then, as for each Maxwell element also, for the whole system 

T = . Ou I 

To describe experimental data it is usually sufficient to set N = 2-3 (see [7]). 
Taking account of a large number of relaxation mechanisms essential for intensive effects 
(see (2)) is not needed, as a rule, for practical purposes. This is associated with the 
fact that under intensive action on a medium such phenomena set in as instability of the 
motion, dissipative heating, separation from thewalls, and rupture of the medium. 

2. CONSTANTS OF THE MODEL 

Each Maxwell element contains four positive constants. Two of them, the relaxation 
time 0 k and the elastic modulus ~k, can be determined in the domain of linear behavior of 
the medium, where (1)-(7) take the form 

d A ~ ,  
Oa ~ -r- Ak = 2qhe, (13) 

o ---- --PE Jr 2 ~ ~A~. (14) 

Here =k = @ + Ak, nk = 2~k0k. 
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The constants e k and Dk are found [2, 7] from tests on low-amplitude shear vibrations, 
simple shear with a constant strain rate D or by stress relaxation. Only sufficiently 
rough agreements of the computational dependences obtained from (13) and (14), with the 
experimental are achieved here since the assumption of strong diversity in the scales of 
the relaxation elements is apparently also rough. This latter description of the experi- 
ments in the nonlinear domain is usually better than in the linear domain. 

The inequalities 

o~ >> o~ >> 0., (15) 
~ << ~ << ~., (16) 

are satisfied for these constants in the domain of comparison with experiment* [2, 7]. 

For a limited intensity of the action on the medium, the third mechanism cannot be 
~:taken into account by virtue of (16) because the elastic strains therein are small. Then 
(8) takes the form 

2 

a = - -  PE q- ~ ~h + s ,  qe, (18) 
k = l  

where 0~s,~1, s.N----~3 �9 

The constants n k and Yk are determined in the nonlinear strain domain of the medium. 
There follows from a qualitative comparison of the theoretical data with experiment (see 
[2, 3]) 

4 ~  nk ~ 2 .  ( 19 )  

Usually n k is assumed independent of k (n k = n). The same must also be said about 
the energy of viscous flow activation E k (E k = E), since the principle of temperature--time 
superposition [8] should be satisfied for polymers in the viscous flowing state. The ex- 
ception might be a coarse-scale mechanism with small weight (see (5)) for which n: # n 
and E~ # E are possible (see [9], Fig. 3). 

The constants are Yk ~ i0~-I05 cmS/m~ which is estimated from the number of mole- 
cules per segment [i0] taking part in the skipping act. This mechanism is often barely 
essential (mkW k << i). 

3. EQUATIONS FOR THE TEMPERATURE OF THE MEDIUM 

In the general case of a simple liquid, the equation for the temperature of the medium 
was obtained in [ii] for the case of entropy elasticity in the system. As for cross- 
linked rubber (see [12], say) it is assumed in [i, 6, ii] that the free energy f = u- TS 
varies for T = const mainly because of a change in the macromolecule configuration (the 
entropy s). The monomer links themselves, that comprise the macromolecules, are weakly 
deformed, which results in constancy of the internal energy for an isothermal process. In 
the case of an assumption about the system entropy elasticity, the equation for the temper- 
ature of a viscoelastic medium is analogous to the corresponding equation for ordinary 
liquids. The correctness of this is confirmed in [ii] and experimentally in a polyiso- 
butylene melt under simple shear and tension. Since the model being discussed in [i, 3] is 
a particular case of a simple liquid, then the temperature equation is valid for it [i!]. 
We duplicate its derivation for our particular case. The first law of thermodynamics in 
local form and under the assumption of satisfaction of the Fourier heat conduction rela- 
tionships appears as follows: 

du 
p ~ = ~v~T + ~ : e. (20)  

dt 

*The maximal number of Maxwell elements in [2] was three~ 
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The specific heat under constant elastic strains c k is 

OS tel ON-- du c = T OT dT (21) 

The s e c o n d  e q u a l i t y  i n  (21) f o l l o w s  f r o m  t h e  r e l a t i o n s h i p s  (10) and ( 1 1 ) .  S i n c e  u i s  a 
f u n c t i o n  o f  o n l y  t h e  t e m p e r a t u r e  T t h e n  t h e  s p e c i f i c  h e a t  c i s  a l s o  a f u n c t i o n  o f  o n l y  t h e  
t e m p e r a t u r e  o f  t h e  medium ( s e e  (20)  and  ( 2 1 ) )  and h a s  t h e  fo rm 

dT 
PC = x v 2 T +  ~: e. (22)  

dt 

The e q u a t i o n  f o r  t h e  t e m p e r a t u r e  o f  t h e  medium (22) c a n  a l s o  b e  o b t a i n e d  f rom t h e  
s e c o n d  l aw o f  t h e r m o d y n a m i c s  i n  l o c a l  f o rm [6]  b y  s u b s t i t u t i n g  an e x p r e s s i o n  t h e r e  f o r  t h e  
entropy production [i]. It is convenient to measure the specific heat c in an unrelaxing 
medium where c(T) = dQ/dT. 

Let us trace how the assumption being used about the entropy elasticity is reflected 
in the rheological equations (1)-(8). The following representation for the entropy of the 
medium is found from (21) 

s (T, c ,  .,. , %,) = 7 ( r )  + ; ' ( c ,  , c~) .  

sh (T. c,O = s~ (T) + s,~ (c~). 
(23) 

Using (23) as well as the expressions (5) and (6) for the stresses and the free energy 
(II), we find that the elastic modulus, as for cross-linked rubbers [6, 12], is ~k ~ pT and 
that (c k = exp2~k) 

oa ~-- -- pl d--~-k I t --  r" (24) 

Formula (24) shows that the change in the elastic deformation (see (3)) is associated just 
with the change in entropy in an isothermal process. 

Let us still note that (see (22)) 

o : e =  X o k : e =  oh :e~ ,h+o~ , :  dt / ' (25) 
h = l  h.=l  

i.e., the convolution o:e takes account of the change in temperature in the system be- 
cause of both dissipative heating which occurs for flows and the change in entropy s [6] 
during elastic strain (see (24)). The expression (25) is obtained from the relation (i) 
when it is multiplied by c-i/2 and subsequently convoluted with the tensor a k (see [i]). 

Systems exist (for instance, metals) in which the free energy changes because of the 
internal energy, i.e., 

Os r = 0  (k---- 1, 2 . . . . .  N). 
0Hh 

As (25)  shows ,  t h i s  n a t u r a l l y  r e s u l t s  i n  no e n t r o p y  h e a t i n g  e f f e c t  i n  t h e  s y s t e m .  In  t h e  
c a s e  o f  f l o w  e x i s t e n c e  i n  s u c h  s y s t e m s  

dT N 
pC --  x . v a T +  X o~ : ev,~. 

dt 
h =  I 

4. SIMPLE SHEAR AND UNIAXIAL TENSION MOTION 

Simple shear is usually realized between two plates, one of which is fixed while the 
other is displaced parallel to the first in the direction i. The axis 2 is here directed 
perpendicularly to the plates. In this case the kinematic matrices have the form 

e.-= 0 , r  - -1  0 , o h =  ck,12 ch.z2 , 

0 0 0 0 0 
(26) 
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where y ~ 0 is the shear velocity, independent of the time in the general case. 

The matrix =k is reduced by the orthogonal transformation qk to the diagonal form * 

c~" = diag {oh, c~ ~, 1} = q~-I .c~.q~, 

qh 

cos % - - s i n q ~  0 

sinq% cos q0~ 0 , 

0 0 1 

(27)  

where the incompressibility condition (2) was taken into account when writing ~k* in (27). 
Substituting the matrix (26) into (i), (4) and (7) with (27) and the condition of incom- 
pressibility of the medium taken into account, we obtain 

c~,u -~- (4Oh) -~ exp (m~W~) (c~ - -  c~ l) [c~ - -  c~ -~ 4- 

�9 + (c~ + c~ '~)cos2%l = 2+c~,~, 

c~i~2 + (40~) -~ exp (m~ W~) (c~ - -  c~ ~) ( ~  + c-f ~) sin 2(p~ = 2r 

2c~.~1 = c~ + ci-1 + ( c ~ - - ~ 1 )  cos 2 ~ ,  

2C~,~ = C~ + C-~ 1 - -  (Oh --C~ -I) COS 2(pg, 2Ch,xo. = (C~ --C'~ -t) sin 2fph. (28)  

Taking into account that c~u/2= qh.c%nk/~-qz I , an expression can be obtained for the 
components of the stress tensor (3) and (8) in terms of c k and @g . 

The following quantities are ordinarily measured in experiments with polymer liquids 

0`2 = 0`2~ - -  ~ = 2 ~ \ n~ / [ c~ /2  + e ~ k / 2  _ 2 - -  (c~h/~ - -  e ~ h l 2 )  cos 2q%], 
lr 

h 

In the case of the stationary flow (28) (for y = const) 

c~ - -  c ;  "1 2 
cos 2eph = c~ q- c~ "-------r  ' sin 2q% = c ~ - - +  c ~  ' 

(cu + c~ -~) (cn - -c~ -1 ) exp (mhWh) = 402+ 

(29) 

(30) 

and (29) takes the form 

0"1g 12 
h 

k 

~ h ) n  k 

4pn i " 

The elastic potential (see (6)) for each Maxwell element under simple shear is 

~ = 4--~2h (c~k/2 + o~/2- 2) 
nh 

~We follow [2] in the further examination of Sec. 4. 

157 



Let us consider the asymptotic dependences of o12, (Y, and o2 on the dimensionless 
parameters r k = ~8 k fo r  mkW k << 1 by fo l lowing  [2] 

max F~ (( 1, o" n ,~ ~1"~, n = X ~ln, 
k 

X IxhOh 1 p,  (31)  
h h, 

nk--2 

min/'h >)1, 31~,~,4 X (  P"~-~ )(4Fh' 4 
h 

�9 n k 
(11~4~  ( Fn / (4Fn)_7_ ' 

�9 ', nn / ( 3 2 )  

n n nh--4 

In order to obtain a correspondence with experiment (a~)< 0, d(a~)/Fh)/dFn<O), for 
each Maxwell element, we assume* 4 > n k > 2, as in [2]. For n k < 2 the dependence o~%)(Fh) 
passes through a maximum. The descending branch is unstable in this case. 

In the case of small amplitude shear vibrations in the linear strain domain, the 
following are the expressions for the elastic and loss moduli for Maxwell models connected 
in parallel 

(~0h) 2 G'=2Xp.n 
h 1 + (~o0h) 2 

G" ~ 2 ~" ~n o~On (33) 
"-- 1 + (o~On) 2 
k 

Uniaxial homogeneous tension is usually realized for the tension of a cylinder of a 
polymer liquid. This kind of strain is given in a fixed Cartesian coordinate system by 
the matrices (K > 0 is the strain rate) 

e = n d i a g  I, 2 ' , o -~0,  cn=diag{~ ,  ~,~-1 ~,~-1}. 

The condition of incompressibility of the medium (2) is taken into account in the 
expressions for the tensors e and ek. Substituting the matrices (34) into (1)-(8) we 
obtain a system of governing equations for the tension 

Oh d%n -t- exp (mnWh) (Xn4-. 1) ( ~ - -  1) 

a = 4 ~  l~n 
h n n  

(34) 

4l~h (~.~h +.2'L~-'*# 2 . 3), (X~ h - -  X~-"h/2), V n  = -r- 

nn 

( 3 5 )  

It was assumed in the derivation of the second formula in where o is the tensile stress. 
(35) that the stress vanishes on the free surface of the cylinder under tension. 

The asymptotic behavior of the stress o as a function of the dimensionless parameters 

r k = ~o k (mkW k << I) is 

max Fn (( 1 : a .~. 311• , 

Ix) minFh>> 1 ! a . ~ 4  ~ Fn (6Fn)-T-" (36) 

*This condition is conserved even for m k # 0. 
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I 

0 I 2 3 # 0 / 2 J ~n~ 

Fig. i. Dependences of the tensile forces re- 
ferred to the area of the specimen initial 
section F/So (Pa) on the total strain in e: 
a) ~= 1.2"10 -~, b) ~ = 1.2-10 -~ (sec-~). 

5. LARGE RELAXATION TIME WITH SMALL WEIGHT 

The case is considered when the inequality 
N 

~i << ~ ~1~, 

is also satisfied as well as ([[5)-(17), i.e., a large relaxation time el with small weight # 
corresponds to the first relaxation mechanism. If only two mechanisms are taken into 

N 
account, then X N~ --N21 ; if subsequent mechanisms are also taken into account, then, as 

usual [2], the inequalities nk > qk+~ are satisfied for them for k > 2. 

It is simplest to investigate the influence of a coarse-scale mechanism with small 
weight on the motion in stationary cases. Moreover, if the coarse-scale relaxation mechan- 
ism is not essential in stationary motion under shear and tension, then it is also not 
essential in the prestationary domain. For simplicity we shall also consider that mkWk<< i, 

n k -= n, and N = 2. 

We start with simple shear. Since ~ << q2 and the effective viscosity under strain 
with a constant shear rate y Nk----~k12/? (see (31) and (32) as Y-+0 Nh-+N~ ; for 

6--n h 

Ff>> I ~]~ ~8~k/n~(4I'~) 4 ) decreases in each Maxwell element as y grows, then the coarse- 
scale mechanism does not affect the dependences o~a(%) (and the nonstationary dependences 
o~2(t)/~). It is also not reflected in the dependence G" (~) (see (33)) which agrees as 

+ 0 with o12(%) for y = m. 

By virtue of the inequality ~,81 >> ~02 (see (17) and (31)), the coarse-scale mechan- 
ism will yield a substantial contribution to the normal stress for F: << I. As the strain 
rate increases the coefficient ~, = oi/~ 2 (see (32)) diminishes (?-+0, ~,~4~81 ---- 2NhOk ; 

for /"h >> I =.,~ = 32N~Ok/ n h (4fn) --7- ) and the role of the coarse-scale mechanism drops. 

This mechanism can be clarified also by dynamic tests for ~8~ << I, where G' (m) = g1(Y = 
~)/2 (see (33)). 

Simple shear tests to clarify the coarse-scale relaxation mechanism for small dimen- 
sionless frequencies and strain rates (for instance if O~ ~ 10 ~ sec) are sufficiently com- 
plex although there is information (see [15]) that such times have been measured success- 
fully in dyrramic tests. 

The time to achieve stationary motion (y = const) for ~ (t) can be protracted con- 
siderably (because of the coarse-scale mechanism) as compared with ~a(t). Experiments to 
measure the development of normal stresses in time for highly viscous media are complex 
for any y because of the ordinarily large characteristic time of the measurement facilities 
[7]. 

However~ under uniaxial tension the coarse-scale mechanism appears considerably more 
clearly than under shear in a substantially nonlinear domain of medium behavior. This 
occurs because the effective viscosity in a stationary flow (•215 (see (36)) 

#Theoretically a coarse-scale mechanism with small weight is predicted in [13~ 14] for 
monodisperse polymers. The nature of such mechanisms can apparently be distinct. 
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increases as the dimensionless strain rate grows Fh= •215 ~-+3~k; Fk~], ~ 
|2~h(6Fh)(nh--21/2/n~). Consequently, the viscosity g1* can become significantly greater than 
3n2 in the domain wnere F~ >>l and F2 << i. Let us recall that for F~ << 1 s z ~1 << ~=. 

Let us examine the most clear appearance of the coarse-scale mechanism in the pre- 
stationary strain domain under tension in the regime K = const. In this case (35) with 
the initial conditions t = 0, XI = i, k2 = 1 were solved numerically for n~ = n2 = 3.6; 
8~ = 8.10 s sec, 02 = I02 sec, ~i = 4.4 Pa, B2 = 1.5"10 3 Pa, m~ = m2 = 0. Shown in the 
figure are the dependences of the tensile force F referred to the area of the initial sec- 
tion So on the logarithmic measure of the total strain In e = ~. As usual, for small 
strain rates one maximum is in these dependences and for large, two. This effect was first 
observed experimentally in [9]. The second maximum is a consequence of exposure during 
motion of the coarse-scale mechanism. Because of this mechanism the time to achieve 
stationary flow can be protracted substantially as compared with the shear dependences. 

In conclusion, let us note that the mechanism of potential barrier distortion by 
stress during tension can turn out also to be substantial because the stress here grows 
more intensively than under shear. This mechanism results in the passage of the effective 
viscosity dependence under stationary tension on the strain rate through the maximum, as 
was observed experimentally in [16]. 

NOTATION 

c k and Hk, elastic strain tensors (Finger and Henke measures) in the k-th Maxwell 
element; e and m, strain rate and vortex tensors; e. k, irreversible strain rate tensor; 
ak, stress tensor; nk, a constant characterizing the degree of the elastlc potentlal; Uk, 
elastic modulus; Ok* , O k and 8o k, relaxation times; l,,k and 12jk, invariants of the 
tensor Ok; E, unit tensor; fk, f: Uk, u, specific, free, and internal energies; s, Sk, 
specific entropies; 0, density; Wk, elastic potential; T, temperature; Ek, viscous flow 
activation energy; ykand mk, constants; R, universal gas constant; N, number of Maxwell 
elements connected in parallel; P, pressure; g, total stress tensor in the system; nk~ 
viscosity; s,, ratio of the retardation time to the relaxation time; n, greatest Newtonian 
~iscosity; c, specific heat; t, time; Q, quantity of heat; K, heat-conduction coefficient; 
Sk, Sk, specific entropy components; #, shear rate, Ck,ij , components of the tensor Ok; 
q,, oz and ~2, first and second differences of the normal stresses and the tangential 
stress under simple shear; qk and ~k , orthogonal transformation and the corresponding 
angle of rotation; Ck, component of the tensor c k reduced to diagonal form; Fk, dimension- 
less strain rate; G' and G" , elastic and loss moduli determined under low-amplitude vibra- 
tions; % tension strain rate; Xk, relative elongation; ~k* and ~k*, effective viscosity 
under shear and tension; m, frequency of vibration. 
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